Isolation and characterization of nanocellulose from chosen hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion methodology


  • Fortunato, E. et al. Optoelectronic gadgets from bacterial nanocellulose. In Bacterial Nanocellulose: From Biotechnology to Bio-Financial system 179–197 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63458-0.00011-1.

  • Cowie, J., Bilek, E. M., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled merchandise – Half 2: Quantity estimates. TAPPI J. 13, 57–69 (2014).

    Article 
    CAS 

    Google Scholar 

  • Klemm, D. et al. Nanocellulose as a pure supply for groundbreaking purposes in supplies science: Right now’s state. Mater. Right now 21, 720–748 (2018).

    Article 
    CAS 

    Google Scholar 

  • Isogai, A. Rising nanocellulose applied sciences: Current developments. Adv. Mater. 33, 2000630 (2021).

    Article 
    CAS 

    Google Scholar 

  • Phanthong, P. et al. Nanocellulose: Extraction and utility. Carbon Resour. Convers. 1, 32–43 (2018).

    Article 

    Google Scholar 

  • Pires, J. R. A., Souza, V. G. L. & Fernando, A. L. Valorization of vitality crops as a supply for nanocellulose manufacturing–present data and future prospects. Ind. Crops Prod. 140, 111642 (2019).

    Article 
    CAS 

    Google Scholar 

  • Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S. Y. & Yuen, Okay. H. Manufacturing of nanocellulose and its purposes in drug supply: A important evaluation. ACS Maintain. Chem. Eng. 7, 15800–15827 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zinge, C. & Kandasubramanian, B. Nanocellulose primarily based biodegradable polymers. Eur. Polym. J. 133, 109758 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dhali, Okay., Ghasemlou, M., Daver, F., Cass, P. & Adhikari, B. A evaluation of nanocellulose as a brand new materials in direction of environmental sustainability. Sci. Whole Environ. 775, 145871 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Picot-Allain, M. C. N. & Emmambux, M. N. Isolation, characterization, and utility of nanocellulose from agro-industrial by-products: A evaluation. Meals Rev. Int. 1, 1–29 (2021).

    Article 

    Google Scholar 

  • Trache, D. et al. Nanocellulose: From fundamentals to superior purposes. Entrance. Chem. 8, 392 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mehanny, S. et al. Extraction and characterization of nanocellulose from three varieties of palm residues. J. Mater. Res. Technol. 10, 526–537 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nang An, V. et al. Extraction of excessive crystalline nanocellulose from biorenewable sources of Vietnamese agricultural wastes. J. Polym. Environ. 28, 1465–1474 (2020).

    Article 

    Google Scholar 

  • Gond, R. Okay., Gupta, M. Okay. & Jawaid, M. Extraction of nanocellulose from sugarcane bagasse and its characterization for potential purposes. Polym. Compos. 42, 5400–5412 (2021).

    Article 
    CAS 

    Google Scholar 

  • Thomas, B. et al. Nanocellulose, a flexible inexperienced platform: From biosources to supplies and their purposes. Chem. Rev. 118, 11575–11625 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kumar, V., Pathak, P. & Bhardwaj, N. Okay. Waste paper: An underutilized however promising supply for nanocellulose mining. Waste Manag. 102, 281–303 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nandi, S. & Guha, P. A evaluation on preparation and properties of cellulose nanocrystal-incorporated pure biopolymer. J. Packag. Technol. Res. 2, 149–166 (2018).

    Article 

    Google Scholar 

  • Trache, D., Hussin, M. H., Haafiz, M. Okay. M. & Thakur, V. Okay. Current progress in cellulose nanocrystals: Sources and manufacturing. Nanoscale 9, 1763–1786 (2017).

    Article 
    CAS 

    Google Scholar 

  • Trache, D. et al. Microcrystalline cellulose: Isolation, characterization and bio-composites utility—A evaluation. Int. J. Biol. Macromol. 93, 789–804 (2016).

    Article 
    CAS 

    Google Scholar 

  • Trache, D. Nanocellulose as a promising sustainable materials for biomedical purposes. AIMS Mater. Sci 5, 201–205 (2018).

    Article 

    Google Scholar 

  • Trache, D. Microcrystalline cellulose and associated polymer composites: Synthesis, characterization and properties. Handb. Compos. from Renew. Mater. Struct. Chem. 1, 61–92 (2016).

  • Nakagaito, A. N. & Yano, H. The impact of morphological adjustments from pulp fiber in direction of nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber primarily based composites. Appl. Phys. A Mater. Sci. Course of. 78, 547–552 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bhattacharya, D., Germinario, L. T. & Winter, W. T. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2007.12.005 (2008).

    Article 

    Google Scholar 

  • Alemdar, A. & Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 99, 1664–1671 (2008).

    Article 
    CAS 

    Google Scholar 

  • Abe, Okay. & Yano, H. Comparability of the traits of cellulose microfibril aggregates of wooden, rice straw and potato tuber. Cellulose 16, 1017–1023 (2009).

    Article 
    CAS 

    Google Scholar 

  • Wang, H., Zhang, X., Jiang, Z., Yu, Z. & Yu, Y. Isolating nanocellulose fibrills from bamboo parenchymal cells with excessive depth ultrasonication. Holzforschung 70, 401–409 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ferrer, A., Filpponen, I., Rodríguez, A., Laine, J. & Rojas, O. J. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Manufacturing of nanofibrillated cellulose and EPFBF nanopaper. Bioresour. Technol. 125, 249–255 (2012).

    Article 
    CAS 

    Google Scholar 

  • Uetani, Okay. & Yano, H. Nanofibrillation of wooden pulp utilizing a high-speed blender. Biomacromol 12, 348–353 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yue, Y. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187 (2012).

    Article 
    CAS 

    Google Scholar 

  • Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers ready by TEMPO-mediated oxidation of native cellulose. Biomacromol 8, 2485–2491 (2007).

    Article 
    CAS 

    Google Scholar 

  • Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T. & Isogai, A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril movies with free carboxyl teams. Carbohydr. Polym. 84, 579–583 (2011).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, A. & Singh, M. Isolation and characterization of cellulose nanofibrils from wheat straw utilizing steam explosion coupled with excessive shear homogenization. Carbohydr. Res. 346, 76–85 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cherian, B. M. et al. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010).

    Article 
    CAS 

    Google Scholar 

  • Abraham, E. et al. Environmental pleasant methodology for the extraction of coir fibre and isolation of nanofibre. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2012.10.056 (2013).

    Article 

    Google Scholar 

  • Deepa, B. et al. Construction, morphology and thermal traits of banana nano fibers obtained by steam explosion. Bioresour. Technol. 102, 1988–1997 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J. & Castro, E. Enhanced enzymatic hydrolysis of olive tree wooden by steam explosion and alkaline peroxide delignification. Course of Biochem. 41, 423–429 (2006).

    Article 
    CAS 

    Google Scholar 

  • Cherian, B. M. et al. A novel methodology for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Meals Chem. 56, 5617–5627 (2008).

    Article 
    CAS 

    Google Scholar 

  • Yamashiki, T. et al. Characterisation of cellulose handled by the steam explosion methodology. Half 2: Impact of therapy situations on adjustments in morphology, diploma of polymerisation, solubility in aqueous sodium hydroxide and supermolecular construction of soppy wooden pulp throughout st. Br. Polym. J. 22, 121–128 (1990).

    Article 
    CAS 

    Google Scholar 

  • Li, J., Henriksson, G. & Gellerstedt, G. Lignin depolymerization/repolymerization and its important position for delignification of aspen wooden by steam explosion. Bioresour. Technol. 98, 3061–3068 (2007).

    Article 
    CAS 

    Google Scholar 

  • Wong, A. W., Wang, H. & Lebrilla, C. B. Number of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal. Chem. 72, 1419–1425 (2000).

    Article 
    CAS 

    Google Scholar 

  • Xiao, B., Solar, X. & Solar, R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74, 307–319 (2001).

    Article 
    CAS 

    Google Scholar 

  • Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. Basic Concerns on Construction and Reactivity of Cellulose: Part 2.1–2.1.4. In Complete Cellulose Chemistry 9–29 (Wiley, 1998). https://doi.org/10.1002/3527601929.ch2a.

  • Batra, S. Okay. Different lengthy vegetable fibres. In Handbook of Fibre Chemistry Vol. 1083 (eds Pearce, E. & Lewin, M.) (Marcel Dekker, 1998).

    Google Scholar 

  • Jiang, B. et al. Lignin as a wood-inspired binder enabled robust, water secure, and biodegradable paper for plastic alternative. Adv. Funct. Mater. 30, 1–11 (2020).

    Article 

    Google Scholar 

  • Leite, A. L. M. P., Zanon, C. D. & Menegalli, F. C. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr. Polym. 157, 962–970 (2017).

    Article 
    CAS 

    Google Scholar 

  • Moore, A. Okay. & Owen, N. L. Infrared spectroscopic research of strong wooden. Appl. Spectrosc. Rev. 36, 65–86 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sills, D. L. & Gossett, J. M. Utilizing FTIR to foretell saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol. Bioeng. 109, 353–362 (2012).

    Article 
    CAS 

    Google Scholar 

  • Solar, X. F., Solar, R. C., Fowler, P. & Baird, M. S. Extraction and characterization of authentic lignin and hemicelluloses from wheat straw. J. Agric. Meals Chem. 53, 860–870 (2005).

    Article 
    CAS 

    Google Scholar 

  • Sain, M. & Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crops Prod. 23, 1–8 (2006).

    Article 
    CAS 

    Google Scholar 

  • Paul, S. A. et al. Solvatochromic and electrokinetic research of banana fibrils ready from steam-exploded banana fiber. Biomacromol https://doi.org/10.1021/bm800026t (2008).

    Article 

    Google Scholar 

  • Naumann, A., Navarro-González, M., Peddireddi, S., Kües, U. & Polle, A. Fourier rework infrared microscopy and imaging: Detection of fungi in wooden. Fungal Genet. Biol. 42, 829–835 (2005).

    Article 

    Google Scholar 

  • Solar, R., Tomkinson, J., Wang, Y. & Xiao, B. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer (Guildf). 41, 2647–2656 (2000).

    Article 
    CAS 

    Google Scholar 

  • Troedec, M. et al. Affect of varied chemical remedies on the composition and construction of hemp fibres. Compos. Half A. Appl. Sci. Manuf. 39, 514–522 (2008).

    Article 

    Google Scholar 

  • Khalil, H. P. S., Ismail, H., Rozman, H. & Ahmad, M. The impact of acetylation on interfacial shear energy between plant fibres and varied matrices. Eur. Polym. J. 37, 1037–1045 (2001).

    Article 
    CAS 

    Google Scholar 

  • Alemdar, A. & Sain, M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68, 557–565 (2008).

    Article 
    CAS 

    Google Scholar 

  • Nacos, M. et al. Kenaf xylan-A supply of biologically energetic acidic oligosaccharides. Carbohydr. Polym. 66, 126–134 (2006).

    Article 
    CAS 

    Google Scholar 

  • Poletto, M., Zattera, A. J. & Santana, R. M. C. Structural variations between wooden species: Proof from chemical composition, FTIR spectroscopy, and thermogravimetric evaluation. J. Appl. Polym. Sci. 126, E337–E344 (2012).

    Article 
    CAS 

    Google Scholar 

  • Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. & Johnson, D. Okay. Cellulose crystallinity index: measurement methods and their impression on deciphering cellulase efficiency. Biotechnol. Biofuels 3, 10 (2010).

    Article 

    Google Scholar 

  • Borysiak, S. & Doczekalska, B. X-ray Diffraction Examine of Pine Wooden Handled with NaOH. Fibers Textual content. East Eur. 13, 87–89 (2005).

    CAS 

    Google Scholar 

  • Marchessault, R. H. & Sundararajan, P. R. The Polysaccharides (Educational Press, 1993).

    Google Scholar 

  • Li, J. et al. Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride within the presence of iodine as a catalyst. Molecules 14, 3551–3566 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fahma, F., Iwamoto, S., Hori, N., Iwata, T. & Takemura, A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17, 977–985 (2010).

    Article 
    CAS 

    Google Scholar 

  • Chandra, J., George, N. & Narayanankutty, S. Okay. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142, 158–166 (2016).

    Article 

    Google Scholar 

  • Chirayil, C. J. et al. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crops Prod. 59, 27–34 (2014).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, T., Zavarin, E. & Barrall, E. M. Thermal evaluation of lignocellulosic supplies. J. Macromol. Sci. Half C 20, 1–65 (1981).

    Article 

    Google Scholar 

  • Nguyen, T., Zavarin, E. & Barrall, E. M. Thermal evaluation of lignocellulosic supplies. Half II. Modified supplies. J. Macromol. Sci. Half C 21, 1–60 (1981).

    Article 

    Google Scholar 

  • Morán, J. I., Alvarez, V. A., Cyras, V. P. & Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose https://doi.org/10.1007/s10570-007-9145-9 (2008).

    Article 

    Google Scholar 

  • Chen, Y., Tan, T., Lee, H. & Abd Hamid, S. Simple fabrication of extremely thermal-stable cellulose nanocrystals utilizing Cr(NO3)3 catalytic hydrolysis system: A feasibility examine from macro- to nano-dimensions. Supplies (Basel) 10, 42 (2017).

    Article 
    ADS 

    Google Scholar 

  • Chowdhury, Z. Z. & Hamid, S. B. A. Preparation and characterization of nanocrystalline cellulose utilizing ultrasonication mixed with a microwave-assisted pretreatment course of. BioResources 11, 3397–3415 (2016).

    Article 
    CAS 

    Google Scholar 

  • Huang, W. Cellulose Nanopapers. In Nanopapers 121–173 (Elsevier, 2018). https://doi.org/10.1016/B978-0-323-48019-2.00005-0.

  • Yildirim, N. & Shaler, S. A examine on thermal and nanomechanical efficiency of cellulose nanomaterials (CNs). Supplies (Basel). 10, 718 (2017).

    Article 
    ADS 

    Google Scholar 

  • Grønli, M. G., Várhegyi, G. & Di Blasi, C. Thermogravimetric evaluation and devolatilization kinetics of wooden. Ind. Eng. Chem. Res. 41, 4201–4208 (2002).

    Article 

    Google Scholar 

  • Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y. Thermal decomposition kinetics of pure fibers: Activation vitality with dynamic thermogravimetric evaluation. Polym. Degrad. Stab. 93, 90–98 (2008).

    Article 
    CAS 

    Google Scholar 

  • Shebani, A. N., van Reenen, A. J. & Meincken, M. The impact of wooden extractives on the thermal stability of various wood-LLDPE composites. Thermochim. Acta 481, 52–56 (2009).

    Article 
    CAS 

    Google Scholar 

  • Poletto, M., Dettenborn, J., Pistor, V., Zeni, M. & Zattera, A. J. Supplies produced from plant biomass: Half I: analysis of thermal stability and pyrolysis of wooden. Mater. Res. 13, 375–379 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mohomane, S. M., Motaung, T. E. & Revaprasadu, N. Thermal degradation kinetics of sugarcane bagasse and comfortable wooden cellulose. Supplies (Basel). 10, 1246 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jeffrey, E. The Anatomy of Woody Vegetation (College of Chicago Press, 1917).

    E-book 

    Google Scholar 

  • Schmid, R. Sonication and different enhancements on Jeffrey’s approach for macerating wooden. Biotech. Histochem. 57, 293–299 (1982).

    CAS 

    Google Scholar 

  • Tappi (Technical Affiliation of pulp and paper trade). Acid-insoluble lignin in wooden and pulp. In Tappi Take a look at Strategies 06:1–6 (Tappi Press, 2006).

  • Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical methodology for estimating the diploma of crystallinity of native cellulose utilizing the x-ray diffractometer. Textual content. Res. J. 29, 786–794 (1959).

    Article 
    CAS 

    Google Scholar 

  • Ahvenainen, P., Kontro, I. & Svedström, Okay. Comparability of pattern crystallinity dedication strategies by X-ray diffraction for difficult cellulose I supplies. Cellulose 23, 1073–1086 (2016).

    Article 
    CAS 

    Google Scholar 

  • Previous post Dubai To Construct World’s First 3D Printed Mosque – I24NEWS
    Next post Ask Hackaday: Do Youngsters Want 3D Printers?