Twin pH- and temperature-responsive poly(dimethylaminoethyl methacrylate)-coated mesoporous silica nanoparticles as a sensible drug supply system


  • Li, Z., Tan, S., Li, S., Shen, Q. & Wang, Ok. Most cancers drug supply within the nano period: An summary and views. Oncol. Rep. 38(2), 611–624 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Haley, B. & Frenkel, E. Nanoparticles for drug supply in most cancers therapy. in Urologic Oncology: Seminars and Authentic Investigations (Elsevier, 2008).

  • Ordikhani, F. et al. Drug supply approaches for the therapy of cervical most cancers. Pharmaceutics 8(3), 23 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, S., Jayaram, P., Kabekkodu, S. P. & Satyamoorthy, Ok. Focused drug supply in cervical most cancers: Present views. Eur. J. Pharmacol. 66, 174751 (2022).

    Article 

    Google Scholar 

  • Tsirlis, T. D. et al. Circulating lymphangiogenic development components in gastrointestinal strong tumors, may they be of any scientific significance?. World J. Gastroenterol. 14(17), 2691 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isambert, N. et al. Analysis of the protection of C-1311 (SYMADEX) administered in a section 1 dose escalation trial as a weekly infusion for 3 consecutive weeks in sufferers with superior strong tumours. Eur. J. Most cancers 46(4), 729–734 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Majidpoor, J. & Mortezaee, Ok. Angiogenesis as a trademark of strong tumors-clinical views. Cell. Oncol. 44(4), 715–737 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schmidt, T. & Carmeliet, P., Angiogenesis: A goal in strong tumors, additionally in leukemia? In Hematology 2010, the American Society of Hematology Training Program E-book, vol. 2011. (no. 1): 1–8 (2011).

  • Dvorak, H., Nagy, J. & Dvorak, A. Construction of strong tumors and their vasculature: Implications for remedy with monoclonal antibodies. Most cancers Cells 3(3), 77–85 (1991).

    PubMed 
    CAS 

    Google Scholar 

  • Soltani, M. & Chen, P. Impact of tumor form and measurement on drug supply to strong tumors. J. Biol. Eng. 6(1), 1–15 (2012).

    Article 

    Google Scholar 

  • Prabhakar, U. et al. Challenges and key concerns of the improved permeability and retention impact for nanomedicine drug supply in OncologyEPR impact and nanomedicine drug supply in oncology. Most cancers Res. 73(8), 2412–2417 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nakamura, Y., Mochida, A., Choyke, P. L. & Kobayashi, H. Nanodrug supply: Is the improved permeability and retention impact adequate for curing most cancers?. Bioconjug. Chem. 27(10), 2225–2238 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nel, A., Ruoslahti, E., & Meng, H., New Insights into “Permeability” as within the Enhanced Permeability and Retention Impact of Most cancers Nanotherapeutics 9567–9569 (ACS Publications, 2017).

  • Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle supply of most cancers medication. Annu. Rev. Med. 63, 185–198 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hortobagyi, G. N. et al. Administration of stage III major breast most cancers with major chemotherapy, surgical procedure, and radiation remedy. Most cancers 62(12), 2507–2516 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jing, Z., Du, Q., Zhang, X. & Zhang, Y. Nanomedicines and nanomaterials for most cancers remedy: Progress, problem and views. Chem. Eng. J. 66, 137147 (2022).

    Article 

    Google Scholar 

  • Abreu, D. B. & Cernadas, J. R. Administration of opposed reactions induced by chemotherapy medication. Curr. Opin. Allergy Clin. Immunol. 22(4), 221–225 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kashkooli, F. M., Soltani, M. & Souri, M. Managed anti-cancer drug launch by means of superior nano-drug supply techniques: Static and dynamic focusing on methods. J. Managed Launch 327, 316–349 (2020).

    Article 

    Google Scholar 

  • Gholami, L. et al. Current advances in lung most cancers remedy primarily based on nanomaterials: A evaluate. Curr. Med. Chem. 6, 66 (2022).

    Google Scholar 

  • Gadelmawla, M. H., Alazzouni, A. S., Farag, A. H., Gabri, M. S. & Hassan, B. N. Enhanced results of ferulic acid towards the dangerous uncomfortable side effects of chemotherapy in colon most cancers: Docking and in vivo examine. J. Primary Appl. Zool. 83(1), 1–11 (2022).

    Article 

    Google Scholar 

  • Hu, C.-M.J. & Zhang, L. Nanoparticle-based mixture remedy towards overcoming drug resistance in most cancers. Biochem. Pharmacol. 83(8), 1104–1111 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kuang, Y. et al. Poly (amino acid)/ZnO/mesoporous silica nanoparticle primarily based advanced drug supply system with a charge-reversal property for most cancers remedy. Colloids Surf. B Biointerfaces 181, 461–469 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Watermann, A. & Brieger, J. Mesoporous silica nanoparticles as drug supply autos in most cancers. Nanomaterials 7(7), 189 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharti, C., Nagaich, U., Pal, A. Ok. & Gulati, N. Mesoporous silica nanoparticles in goal drug supply system: A evaluate. Int. J. Pharm. Investig. 5(3), 124 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug supply. Adv. Funct. Mater. 30(2), 1902634 (2020).

    Article 
    CAS 

    Google Scholar 

  • Harish, V. et al. Assessment on nanoparticles and nanostructured supplies: Bioimaging, biosensing, drug supply, tissue engineering, antimicrobial, and agro-food purposes. Nanomaterials 12(3), 457 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gou, Ok. et al. Synthesis, structural properties, biosafety and purposes of chiral mesoporous silica nanostructures. Chem. Eng. J. 421, 127862 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, R., Hua, M., Liu, H. & Li, J. Tips on how to design nanoporous silica nanoparticles in regulating drug supply: Floor modification and porous management. Mater. Sci. Eng. B 263, 114835 (2021).

    Article 
    CAS 

    Google Scholar 

  • Couvreur, P. Nanoparticles in drug supply: previous, current and future. Adv. Drug Deliv. Rev. 65(1), 21–23 (2013).

    Article 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, Y. et al. Silica nanoparticles: Biomedical purposes and toxicity. Biomed. Pharmacother. 151, 113053 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Colilla, M., González, B. & Vallet-Regí, M. Mesoporous silica nanoparticles for the design of sensible supply nanodevices. Biomater. Sci. 1(2), 114–134 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Polymer-coated hole mesoporous silica nanoparticles for triple-responsive drug supply. ACS Appl. Mater. Interfaces 7(32), 18179–18187 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Track, N. & Yang, Y.-W. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem. Soc. Rev. 44(11), 3474–3504 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lee, C. H. et al. Intracellular pH-responsive mesoporous silica nanoparticles for the managed launch of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 49(44), 8214–8219 (2010).

    Article 
    CAS 

    Google Scholar 

  • Gerweck, L. E. & Seetharaman, Ok. Mobile pH gradient in tumor versus regular tissue: Potential exploitation for the therapy of most cancers. Most cancers Res. 56(6), 1194–1198 (1996).

    PubMed 
    CAS 

    Google Scholar 

  • Peppas, N. A. & Khare, A. R. Preparation, construction and diffusional habits of hydrogels in managed launch. Adv. Drug Deliv. Rev. 11(1–2), 1–35 (1993).

    Article 
    CAS 

    Google Scholar 

  • Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug supply. Nat. Mater. 12(11), 991–1003 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Qiao, Y. et al. Stimuli-responsive nanotherapeutics for precision drug supply and most cancers remedy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11(1), e1527 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Roghani-Mamaqani, H. Floor-initiated ATRP of styrene from epoxy teams of graphene nanolayers: Twofold polystyrene chains and numerous graft densities. RSC Adv. 5(66), 53357–53368 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hatami, L., Haddadi-Asl, V., Ahmadian-Alam, L., Roghani-Mamaqani, H. & Salami-Kalajahi, M. Impact of nanoclay on styrene and butyl acrylate AGET ATRP in miniemulsion: Research of nucleation kind, kinetics, and polymerization management. Int. J. Chem. Kinet. 45(4), 221–235 (2013).

    Article 
    CAS 

    Google Scholar 

  • Khezri, Ok. & Roghani-Mamaqani, H. Impact of MCM-41 nanoparticles on ARGET ATRP of styrene: Investigating thermal properties. J. Compos. Mater. 49(12), 1525–1535 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lee, S. B., Russell, A. J. & Matyjaszewski, Ok. ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino) ethyl methacrylate and n-butyl methacrylate in aqueous media. Biomacromolecules 4(5), 1386–1393 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Golshan, M., Rostami-Tapeh-Esmail, E., Salami-Kalajahi, M. & Roghani-Mamaqani, H. A evaluate on synthesis, photophysical properties, and purposes of dendrimers with perylene core. Eur. Polym. J. 137, 109933 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kurisawa, M., Yokoyama, M. & Okano, T. Gene expression management by temperature with thermo-responsive polymeric gene carriers. J. Managed Launch 69(1), 127–137 (2000).

    Article 
    CAS 

    Google Scholar 

  • Hu, H., Fan, X. D., Cao, Z. L., Cheng, W. X. & Liu, Y. Y. Synthesis and characterization of the environmental-sensitive hyperbranched polymers as novel carriers for managed drug launch. J. Appl. Polym. Sci. 101(1), 311–316 (2006).

    Article 
    CAS 

    Google Scholar 

  • Shen, Y., Zeng, F., Zhu, S. & Pelton, R. Novel cationic macromonomers by residing anionic polymerization of (dimethylamino) ethyl methacrylate. Macromolecules 34(2), 144–150 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, S. et al. Synthesis of shell cross-linked micelles with pH-responsive cores utilizing ABC triblock copolymers. Macromolecules 35(16), 6121–6131 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Khezri, Ok., Haddadi-Asl, V., Roghani-Mamaqani, H. & Salami-Kalajahi, M. Encapsulation of organomodified montmorillonite with PMMA through in situ SR&NI ATRP in miniemulsion. J. Polym. Res. 19(5), 9868 (2012).

    Article 

    Google Scholar 

  • Vamvakaki, M., Billingham, N. & Armes, S. Synthesis of managed construction water-soluble diblock copolymers through oxyanionic polymerization. Macromolecules 32(6), 2088–2090 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ebrahimi, A., Haghighi, M. & Aghamohammadi, S. Sono-precipitation fabrication of ZnO over modified SAPO-34 zeotype for efficient degradation of methylene blue pollutant beneath simulated photo voltaic mild illumination. Course of Saf. Environ. Defend. 165, 307–322 (2022).

    Article 
    CAS 

    Google Scholar 

  • Karthika, J. & Vishalakshi, B. Novel stimuli responsive gellan gum-graft-poly (DMAEMA) hydrogel as adsorbent for anionic dye. Int. J. Biol. Macromol. 81, 648–655 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wu, X. & Scott, Ok. A polymethacrylate-based quaternary ammonium OH− ionomer binder for non-precious metallic alkaline anion trade membrane water electrolysers. J. Energy Sources 214, 124–129 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, F., Chen, S., Cao, Z. & Wang, G. A photograph, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and managed launch. Polymer 83, 85–91 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, W., Tang, J., Jia, Z., Li, X. & Xiao, Z. Grafting of amphiphilic polymers containing quaternary ammonium group on SiO2 floor through surface-initiated ATRP. J. Polym. Res. 19(2), 1–8 (2012).

    Article 

    Google Scholar 

  • Previous post Black Friday 3D Printer Offers 2023: Early Desktop, Resin, Filament, Laser & Extra 3D Printer Gross sales Printed by Shopper Stroll
    Next post Finest tech offers through the Finest Purchase Black Friday 2023 sale