Synergistic efficiency of a brand new bimetallic advanced supported on magnetic nanoparticles for Sonogashira and C–N coupling reactions


  • Huang, L., Ji, T. & Rueping, M. Distant nickel-catalyzed cross-coupling arylation through proton-coupled electron transfer-enabled C–C bond cleavage. J. Am. Chem. Soc. 142, 3532–3539. https://doi.org/10.1021/jacs.9b12490 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reimann, C. E., Kim, Ok. E., Rand, A. W., Moghadam, F. A. & Stoltz, B. M. What’s a cross-coupling? An argument for a common definition. Tetrahedron 130, 133176. https://doi.org/10.1016/j.tet.2022.133176 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohjer, F., Mofatehnia, P., Rangraz, Y. & Heravi, M. M. Pd-free, Sonogashira cross-coupling response. An replace. J. Organomet. Chem. 936, 121712 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rajalakshmi, C. et al. Theoretical investigation into the mechanism of copper-catalyzed Sonogashira coupling utilizing trans-1, 2-diamino cyclohexane ligand. Polyhedron 193, 114869 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dong, Z. et al. Palladium immobilized on a polyimide covalent natural framework: An environment friendly and recyclable heterogeneous catalyst for the Suzuki-Miyaura coupling response and nitroarene discount in water. Catal. Lett. 152, 299–306 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ranu, B. C., Adak, L., Mukherjee, N. & Ghosh, T. Benign steel catalyzed carbon-carbon and carbon-heteroatom bond formation. Synlett. 34, 601–621 (2022).

    Article 

    Google Scholar 

  • Yang, Q. et al. Mizoroki-Heck cross-coupling of bromobenzenes with styrenes: One other instance of Pd-catalyzed cross-coupling with potential security hazards. Org. Course of Res. Dev. 23, 2148–2156. https://doi.org/10.1021/acs.oprd.9b00126 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hassan, Z., Spuling, E., Knoll, D. M. & Bräse, S. Regioselective functionalization of [2.2]paracyclophanes: Latest artificial progress and views. Angew. Chem. Int. Ed. 59, 2156–2170. https://doi.org/10.1002/anie.201904863 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rayadurgam, J., Sana, S., Sasikumar, M. & Gu, Q. Palladium catalyzed C–C and C–N bond forming reactions: An replace on the synthesis of prescription drugs from 2015–2020. Org. Chem. Entrance. 8, 384–414 (2021).

    Article 
    CAS 

    Google Scholar 

  • Buskes, M. J. & Blanco, M.-J. Impression of cross-coupling reactions in drug discovery and growth. Molecules 25, 3493 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kishore, D. R., Sreenivasulu, C., Dapkekar, A. B. & Satyanarayana, G. Latest functions on dual-catalysis for C–C and C–X cross-coupling reactions. SynOpen 6, 179–194 (2022).

    Article 

    Google Scholar 

  • Niakan, M. & Masteri-Farahani, M. Pd–Ni bimetallic catalyst supported on dendrimer-functionalized magnetic graphene oxide for environment friendly catalytic Suzuki-Miyaura coupling response. Tetrahedron 108, 132655 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jia, X. et al. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for environment friendly photocatalytic Suzuki coupling. Appl. Catal. B Environ. 300, 120756. https://doi.org/10.1016/j.apcatb.2021.120756 (2022).

    Article 
    CAS 

    Google Scholar 

  • Dong, Z. et al. Palladium supported on urea-containing porous natural polymers as heterogeneous catalysts for C–C cross coupling reactions and discount of nitroarenes. J. Saudi Chem. Soc. 25, 101317 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kranthikumar, R. Latest advances in C(sp3)–C(sp3) cross-coupling chemistry: A dominant efficiency of nickel catalysts. Organometallics 41, 667–679. https://doi.org/10.1021/acs.organomet.2c00032 (2022).

    Article 
    CAS 

    Google Scholar 

  • Karkon, E. G. & Mostafavi, H. A novel Fe3O4@TCH@ Ni(II) nanoparticle: An environment friendly magnetically retrievable nanocatalyst for C–C and C–heteroatom bond formation response. Appl. Organomet. Chem. 36, e6824 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yang, Q., Zhao, Y. & Ma, D. Cu-mediated Ullmann-type cross-coupling and industrial functions in route design, course of growth, and scale-up of pharmaceutical and agrochemical processes. Org. Course of Res. Dev. 26, 1690–1750. https://doi.org/10.1021/acs.oprd.2c00050 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J., Wang, S., Zhang, Y. & Feng, Z. Iron-catalyzed cross-coupling reactions for the development of carbon-heteroatom bonds. Asian J. Org. Chem. 9, 1519–1531 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ai, H. J. et al. Iron-catalyzed alkoxycarbonylation of alkyl bromides through a two-electron switch course of. Angew. Chem. Int. Ed. 61, e202211939 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Khorsandi, Z., Hajipour, A. R., Sarfjoo, M. R. & Varma, R. S. A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling reactions: Synthesis of abemaciclib and fedratinib. Inexperienced Chem. 23, 5222–5229 (2021).

    Article 
    CAS 

    Google Scholar 

  • Khorsandi, Z., Keshavarzipour, F., Varma, R. S., Hajipour, A. R. & Sadeghi-Aliabadi, H. Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib through CN cross coupling reactions utilizing Pd/Cu-free Co-catalyst. Mol. Catal. 517, 112011 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aneeja, T., Neetha, M., Afsina, C. & Anilkumar, G. Progress and prospects in copper-catalyzed C-H functionalization. RSC Adv. 10, 34429 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boddapati, S. M. et al. Copper-promoted one-pot strategy: Synthesis of benzimidazoles. Molecules. 25, 1788 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, T., Mahata, A. & Kundu, D. Latest advances in copper-catalyzed carbon chalcogenides cross-coupling reactions. Curr. Org. Synth. 20, 267–277 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, Ok. A., Picinich, L. A. & Siamaki, A. R. Nickel–palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Adv. 13, 7818–7827 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varadwaj, G. B. B., Rana, S. & Parida, Ok. A steady amine functionalized montmorillonite supported Cu, Ni catalyst exhibiting synergistic and co-operative effectiveness in the direction of C–S coupling reactions. RSC Adv. 3, 7570–7578 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rimaz, S. et al. Insights into catalyst construction, kinetics and response mechanism throughout propane dehydrogenation on Pt–Ge bimetallic catalysts. Appl. Catal. A Gen. 643, 118751. https://doi.org/10.1016/j.apcata.2022.118751 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rai, R. Ok., Tyagi, D., Gupta, Ok. & Singh, S. Ok. Activated nanostructured bimetallic catalysts for C–C coupling reactions: Latest progress. Catal. Sci. Technol. 6, 3341–3361 (2016).

    Article 
    CAS 

    Google Scholar 

  • Folsom, S. Ok., Ivey, D. J., McNair, F. S. & Siamaki, A. R. Nickel–Fe3O4 magnetic nanoparticles supported on multiwalled carbon nanotubes: Efficient catalyst in Suzuki cross coupling reactions. Catalysts. 11, 495 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nair, P. P., Philip, R. M. & Anilkumar, G. Nickel catalysts in Sonogashira coupling reactions. Org. Biomol. Chem. 19, 4228–4242 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lipshutz, B. H., Nihan, D. M., Vinogradova, E., Taft, B. R. & Bošković, ŽV. Copper+ nickel-in-charcoal (Cu–Ni/C): A bimetallic, heterogeneous catalyst for cross-couplings. Org. Lett. 10, 4279–4282 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasresfahani, Z. & Kassaee, M. Z. Bimetallic Ni/Cu mesoporous silica nanoparticles as an environment friendly and reusable catalyst for the Sonogashira cross-coupling reactions. J. Organomet. Chem. 937, 121703. https://doi.org/10.1016/j.jorganchem.2021.121703 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fu, Z., Li, T., He, X., Liu, J. & Wu, Y. The recyclable cyclopalladated ferrocenylimine self-assembly catalytic movie and investigation of its function within the mechanism of heterogeneous catalysis. RSC Adv. 4, 26413–26420 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sarker, M. Z., Rahman, M. M., Minami, H., Suzuki, T. & Ahmad, H. Amine useful silica–supported bimetallic Cu–Ni nanocatalyst and investigation of some typical reductions of fragrant nitro-substituents. Colloid Polym. Sci. 300, 279–296 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ren, R., Li, T., Liu, M. & Wu, Y. Fabrication and catalytic properties of “cage like” aryl imine Pd(II)/Cu(II)-bimetallic catalytic monolayer supported on graphene oxide for Suzuki coupling response. Chem. Eng. Sci. 253, 117604 (2022).

    Article 
    CAS 

    Google Scholar 

  • Huang, P. et al. Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayer–-preparation, construction, catalytic dynamic and synergistic. Mol. Catal. 469, 75–86 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mara, M. W. et al. Unveiling ultrafast dynamics in bridged bimetallic complexes utilizing optical and X-ray transient absorption spectroscopies. Chem. Sci. 13, 1715–1724 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, A. W. et al. Basic design guidelines for bimetallic platinum(II) complexes. J. Phys. Chem. 125, 9438–9449 (2021).

    Article 
    CAS 

    Google Scholar 

  • Thoke, M. B., Solar, G.-J., Borse, R. A., Lin, P. & Lin, S.-X. Unimolecular cooperative metallaphotocatalysis with conjugately bridged Ir–Ni complexes and its functions in natural coupling reactions. Org. Chem. Entrance. 9, 1797–1807 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hazari, A. S., Chandra, S., Kar, S. & Sarkar, B. Steel complexes of singly, doubly and triply linked porphyrins and corroles: An perception into the physicochemical properties. Chem. Eur. J. 28, e202104550 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stott, T. L. & Wolf, M. O. Digital interactions in metallated polythiophenes: what might be discovered from mannequin complexes. Coord. Chem. Rev. 246, 89–101. https://doi.org/10.1016/S0010-8545(03)00114-0 (2003).

    Article 
    CAS 

    Google Scholar 

  • Gao, H. et al. Digital coupling and electron switch between two Mo2 items by means of meta-and para-phenylene bridges. Chem. Eur. J. 25, 3930–3938 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Ok., Shi, W. & Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1, 2, 4-triazole derivatives. Dalton Trans. 40, 8475–8490 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, N. et al. Boosting electrocatalytic CO2 discount with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 5, 1130–1143 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fa, D., Yuan, J., Feng, G., Lei, S. & Hu, W. Regulating the synergistic impact in bimetallic two-dimensional polymer oxygen evolution response catalysts by adjusting the coupling power between steel facilities. Angew. Chem. Int. Ed. 135, e202300532 (2023).

    Article 
    ADS 

    Google Scholar 

  • Hajipour, A. R., Kalantari Tarrari, M. & Jajarmi, S. Synthesis and characterization of 4-AMTT-Pd(II) advanced over Fe3O4@ SiO2 as supported nanocatalyst for Suzuki-Miyaura and Mizoroki-heck cross-coupling reactions in water. Appl. Organomet. Chem. 32, e4171 (2018).

    Article 

    Google Scholar 

  • Sobhani, S., Nasseri, F. & Zarifi, F. Distinctive function of 2-hydroxyethylammonium acetate as an ionic liquid within the synthesis of Fe3O4 magnetic nanoparticles and preparation of pyridine derivatives within the presence of a brand new magnetically recyclable heterogeneous catalyst. J. Iran. Chem. Soc. J. 15, 2721–2732 (2018).

    Article 
    CAS 

    Google Scholar 

  • Geldard, J. F. & Lions, F. The natural chemistry of a brand new weak subject tridentate chelating agent. 3,5-di(2-pyridyl)-1,2,4-triazole. J. Org. Chem. 30, 318–319. https://doi.org/10.1021/jo01012a522 (1965).

    Article 
    CAS 

    Google Scholar 

  • Niakan, M., Karimi, S., Masteri-Farahani, M. & Shekaari, H. An environment friendly, cost-effective, and magnetically recoverable copper catalyst for O-arylation of phenols with aryl halides in choline chloride-based deep eutectic solvents. Colloids Surf. A Physicochem. Eng. Asp. 620, 126603 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ghasemi-Ghahsareh, A., Safaei-Ghomi, J. & Oboudatian, H. S. Supported l-tryptophan on Fe3O4@SiO2 as an environment friendly and magnetically separable catalyst for one-pot development of spiro [indene-2, 2′-naphthalene]-4′-carbonitrile derivatives. RSC Adv. 12, 1319–1330 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, N. et al. Structural evolution and synthesis mechanism of ytterbium disilicate powders ready by cocurrent chemical coprecipitation technique. Ceram. Int. 48, 11545–11554 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nikoorazm, M., Noori, N., Tahmasbi, B. & Faryadi, S. A palladium advanced immobilized onto mesoporous silica: A extremely environment friendly and reusable catalytic system for carbon–carbon bond formation and anilines synthesis. Transit. Met. Chem. 42, 469–481 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fekri, L. Z. & Zadeh, L. H. Copper/dapsone cuvalented Fe3O4@SiO2-propyl nanocomposite as a extremely lively and magnetically recoverable Lewis acid catalyst for the novel synthesis of bis-dapsone derived acridines. J. Chin. Chem. Soc. 68, 1673–1685 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yao, Y. et al. Fabrication of Fe3O4/SiO2 core/shell nanoparticles connected to graphene oxide and its use as an adsorbent. J. Colloid Interface Sci. 379, 20–26 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to attain electrical/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 430, 132747 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kazemnejadi, M. et al. Imidazolium chloride-Co(iii) advanced immobilized on Fe3O4@SiO2 as a extremely lively bifunctional nanocatalyst for the copper-, phosphine-, and base-free Heck and Sonogashira reactions. Inexperienced Chem. 21, 1718–1734. https://doi.org/10.1039/C8GC03919D (2019).

    Article 
    CAS 

    Google Scholar 

  • Lesiak, B. et al. Floor examine of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Entrance. Chem. 7, 642 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaman, M. M. et al. Eco-friendly synthesis of Fe3O4 nanoparticles based mostly on pure stabilizers and their antibacterial functions. ChemistrySelect. 4, 7824–7831 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kazeminezhad, I. & Mosivand, S. Section transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles utilizing sintering remedy. Acta Phys. Pol. A. 125, 1210–1214 (2014).

    Article 
    ADS 

    Google Scholar 

  • Bentiss, F. et al. Corrosion management of gentle metal utilizing 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in regular hydrochloric acid medium. Corros. Sci. 51, 1628–1635. https://doi.org/10.1016/j.corsci.2009.04.009 (2009).

    Article 
    CAS 

    Google Scholar 

  • Bentiss, F. et al. Enchancment of corrosion resistance of carbon metal in hydrochloric acid medium by 3, 6-bis (3-pyridyl) pyridazine. Int. J. Electrochem. Sci. 7, 1699–1723 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mohanty, A., Kumar, S. & Tiwari, S. Evaluation of N-(4H–1, 2, 4-triazol-4-yl) octanamide as hydrochloric acid corrosion inhibitor for gentle metal. Mater. Immediately Commun. 27, 102439 (2021).

    Article 
    CAS 

    Google Scholar 

  • Outirite, M. et al. Ac impedance, X-ray photoelectron spectroscopy and density useful concept research of three, 5-bis (n-pyridyl)-1, 2, 4-oxadiazoles as environment friendly corrosion inhibitors for carbon metal floor in hydrochloric acid answer. Electrochim. Acta. 55, 1670–1681 (2010).

    Article 
    CAS 

    Google Scholar 

  • Liu, G. et al. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation. Colloids Surf. A: Physicochem. Eng. Asp. 503, 34–42 (2016).

    Article 
    CAS 

    Google Scholar 

  • Liu, G. et al. In situ probing the self-assembly of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on chalcopyrite surfaces. Colloids Surf. A: Physicochem. Eng. Asp. 511, 285–293 (2016).

    Article 
    CAS 

    Google Scholar 

  • Vinoba, M., Bhagiyalakshmi, M., Jeong, S. Ok., Nam, S. C. & Yoon, Y. Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration. Chem. Eur. J. 18, 12028–12034 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, F. et al. A facile molecular aggregation of isoquinoline based mostly g-C3N4 for top photocatalytic efficiency beneath seen gentle illumination. Mater. Res. Bull. 152, 111865 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wei, Z. et al. Excessive-efficiency adsorption of phenanthrene by Fe3O4–SiO2-dimethoxydiphenylsilane nanocomposite: Experimental and theoretical examine. J. Hazard. Mater. 422, 126948 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Setting up NiCo/Fe3O4 heteroparticles inside MOF-74 for environment friendly oxygen evolution reactions. J. Am. Chem. Soc. 140, 15336–15341 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, H., Xiao, H. & Goddard, W. A. III. In silico discovery of latest dopants for Fe-doped Ni oxyhydroxide (Ni1xFexOOH) catalysts for oxygen evolution response. J. Am. Chem. Soc. 140, 6745–6748 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sultana, S. et al. Inexperienced synthesis of graphene oxide (GO)-anchored Pd/Cu bimetallic nanoparticles utilizing Ocimum sanctum as bio-reductant: An environment friendly heterogeneous catalyst for the Sonogashira cross-coupling response. RSC Adv. 10, 23108–23120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghasemzadeh, M. S. & Akhlaghinia, B. FMMWCNTs@ CPA@ SMTU@ PdII NPs: As a flexible ferromagnetic nanostructured catalyst for Sonogashira-Hagihara cross-coupling response in solvent-Free situations. ChemistrySelect 4, 1542–1555 (2019).

    Article 
    CAS 

    Google Scholar 

  • Magdesieva, T. V., Nikitin, O. M., Yakimansky, A. V., Goikhman, M. Y. & Podeshvo, I. V. New heterobimetallic Cu(I)–Pd(II)-containing polymer complexes: Electrochemical synthesis and utility in catalysis. Electrochim. Acta. 56, 3666–3672 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gholinejad, M. et al. Graphene quantum dots modified Fe3O4 nanoparticles supported PdCu with enhanced catalytic exercise for Sonogashira response. ChemCatChem. 8, 1442–1449 (2017).

    Article 

    Google Scholar 

  • Fan, X., Lin, D., Xu, Z. & Li, Y. Pd/Cu bimetallic catalyst immobilized on PEI capped cellulose-polyamidoamine dendrimer: Synthesis, characterization, and utility in Sonogashira reactions for the synthesis of alkynes and benzofurans. Colloids Surf. A Physicochem. Eng. Asp. 648, 129206 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, G. et al. Copper and palladium bimetallic sub-nanoparticles have been stabilized on modified polyaniline supplies as an environment friendly catalyst to advertise C–C coupling reactions in aqueous answer. Nanoscales 14, 2256–2265 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nasseri, M. A., Rezazadeh, Z., Kazemnejadi, M. & Allahresani, A. A Co–Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional efficiency for the base-free Suzuki, Sonogashira, and C–N cross-coupling reactions in water. Dalton Trans. 49, 10645–10660 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martinez, E. E., Moreno, M. R., Barksdale, C. A. & Michaelis, D. J. Impact of precatalyst oxidation state in C–N cross-couplings with 2-phosphinoimidazole-derived bimetallic Pd(I) and Pd(II) complexes. Organometallics 40, 2763–2767 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pye, D. R. & Mankad, N. P. Bimetallic catalysis for C–C and C–X coupling reactions. Chem. Sci. 8, 1705–1718 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, N. et al. Modified graphene supported Ag–Cu NPs with enhanced bimetallic synergistic impact in oxidation and Chan-Lam coupling reactions. RSC Adv. 10, 30048–30061 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Extra, G. S., Kar, A. Ok. & Srivastava, R. Cu–Ce bimetallic steel–natural framework-derived, oxygen vacancy-boosted seen light-active Cu2O–CeO2/C heterojunction: An environment friendly photocatalyst for the Sonogashira coupling response. Inorg. Chem. 61, 19010–19021 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Mechanistic examine of Cu–Ni bimetallic catalysts supported by graphene derivatives for hydrogenation of CO2 to methanol. J. CO2 Util. 49, 101542 (2021).

    Article 
    CAS 

    Google Scholar 

  • Giri, R. et al. Mechanism of the Ullmann biaryl ether synthesis catalyzed by complexes of anionic ligands: Proof for the response of iodoarenes with ligated anionic CuI intermediates. J. Am. Chem. Soc. 140, 793–806 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, P. et al. Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayer-preparation, construction, catalytic dynamic and synergistic. Mol. Catal. 469, 75–86 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gebresillase, M. N., Raguindin, R. Q., Kim, H. & Search engine optimization, J. G. Supported bimetallic catalysts for the solvent-free hydrogenation of levulinic acid to γ-valerolactone: Impact of steel mixture (Ni–Cu, Ni–Co, Cu–Co). Catalysts. 10, 1354 (2020).

    Article 
    CAS 

    Google Scholar 

  • Previous post Microcontroller-Powered Lunchbox Makes Printed Versions of QR Code Menus
    Next post Hackers Earn $350k in Second Day of Pwn2Own Toronto 2019